Mechanical Properties of Composite Mortars Using Flurogypsum and PVC Particles

نویسندگان

  • Luisa Maria Flores-Vélez
  • Hector Valle
  • Gabriel García
  • Roberto Torres
  • Martha Lomelí
  • Octavio Domínguez
چکیده

The present work describes the viability of a mortar binder based on two industrial by-products: poly(vinyl chloride) (PVC) particles from scrap and anhydrite (CaSO4) from fluorgypsum. Mortar composites were made incorporating different amounts of PVC particles and cured at constant room temperature during various periods of time. From X-ray diffraction, it was possible to follow the hydration process and to estimate the effect of the PVC particles on anhydrite transformation to gypsum (CaSO4·2H2O). Compressive strength from uniaxial testing was measured from stressstrain curves carried out at room temperature. According to these results, the hydration rates of the composites depend on the concentration of PVC particles and there is an enhancement in their compressive strength as particle content increases, reaching values of 36 MPa after 28 days.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physico-Mechanical Properties of Organo-Modified Bentonite Reinforced Cement Mortars

It is demonstrated that the addition of organo-modified Na-bentonite (OMB) particles to Portland cement mortar can promote its physical and mechanical properties. A series of experimental works on some important physico-mechanical properties of Portland cement mortars mixed with various dosages of hydrophobic OMB were performed. The obtained results confirm that the OMB provides a dense packing...

متن کامل

The Structural and Mechanical Properties of Al-2.5%wt. B4C Met-al Matrix Nano-composite Fabricated by the Mechanical Alloying

In this study, aluminum (Al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (B4C) were used to prepare Al-2.5%wt., B4C nano-composite and micro-composite, respectively, using mechanical alloying method. The mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. The XRD results indicated that the crystallite sizes of both the micro-composite and ...

متن کامل

Synthesis and enhanced mechanical properties of nano Zinc Oxide in Polyvinyl alcohol and Polyvinyl pyrollidone composite film

Zinc oxide nanoparticles have been synthesized by chemical reaction method.  Polyvinyl alcohol (PVA) composite film filled with nanometric, monodispersed zinc oxide nano particles prepared by PVA solution and nanozinc oxide. Polymer blend with ZnO nanoparticle composite film has prepared by casting technique.  The property of nano composites depends greatly on the chemistry of polymer matrices....

متن کامل

Synthesis and enhanced mechanical properties of nano Zinc Oxide in Polyvinyl alcohol and Polyvinyl pyrollidone composite film

Zinc oxide nanoparticles have been synthesized by chemical reaction method.  Polyvinyl alcohol (PVA) composite film filled with nanometric, monodispersed zinc oxide nano particles prepared by PVA solution and nanozinc oxide. Polymer blend with ZnO nanoparticle composite film has prepared by casting technique.  The property of nano composites depends greatly on the chemistry of polymer matrices....

متن کامل

Introducing a novel Polyvinyl chloride/Tungsten composites for shielding against gamma and X-ray radiations

Introduction: This study introduces a novel polyvinyl chloride (PVC)/tungsten composites with characterization of their shielding properties by employing different techniques. Methods: The PVC/tungsten composites were produced by employing various weight fractions of tungsten micro-particles including 0, 20, and 40 % wt via melt blending method. In the next st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014